Hensikten med Kengurukonkurransen er å motivere elever for matematikk. Oppgavene skal være en blanding av enkle, morsomme, interessante, middels vanskelige og utfordrende oppgaver.
I denne teksten ser vi nærmere på én av oppgavene, og hvordan noen elever har løst den.
Kengurukonkurransen er satt sammen av forskjellige typer oppgaver. I de tre oppgavesettene Ecolier (4.–5. trinn), Benjamin (6.–8. trinn) og Cadet (9.–10. trinn) finnes det både tall-, geometri- og logiske oppgaver. Alle oppgavetypene er representert i hvert oppgavesett med ulik vanskegrad.
Denne teksten presenterer tre eksempler på oppgaver med mønstre. Kanskje disse kan brukes som…
Vi som arbeider med Kengurukonkurran-sen synes det er spennende at elever fra 10 til 16 år blir utfordret på mer eller mindre den samme oppgaven. I tillegg er det interessant at en ide kan utvikles og dermed varieres, gjøres enklere eventuelt vanskeligere ved at noen opplysninger i teksten blir forandret og/eller at spørsmålet på slutten av oppgaven endres.
Etter sommerferien når elevene begynner på et nytt klassetrinn eller en ny skole, er ofte de første matematikktimene satt av til repetisjon. Når påsken nærmer seg, stresser lærerne for å bli ferdige med «pensum» for å ha nok tid til repetisjon.
Denne teksten ser på måter å repetere på som gir elevene langt større utbytte enn en ny gjennomgang som ikke hjelper til forståelsen.
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er del 1 i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser hvordan…
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er del 2 i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser hvordan…
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er del 3 i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser hvordan…
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er siste del i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser…
I grunnskolen er brøk et gjennomgående tema. Mange elever opplever at brøk er vanskelig å forstå, og de husker ikke hvordan de skal utføre regneoperasjonene. I større etterutdanningsforløp som matematikksenteret har ansvar for, blir brøk ofte ønsket som tema på kurs og i demonstrasjonsundervisning.
Misoppfatninger i matematikk, Representasjoner, Tallforståelse
Denne artikkelen bygger på artikkelen Å utvikle elevers begrepsforståelse (Kerstin Pettersson og Gerd Brandell, 2017). Der finner man eksempel på terskelbegrepene funksjon og derivert. Denne artikkelen inneholder et par andre eksempler på terskelbegrep, brøk og sannsynlighet. Den har eksempler på hva som kan gå galt i overgangsfasen og gir noen tips til hva man kan gjøre for å hjelpe elevene over…