Misoppfatninger i matematikk, Representasjoner, Tallforståelse
Denne artikkelen bygger på artikkelen Å utvikle elevers begrepsforståelse (Kerstin Pettersson og Gerd Brandell, 2017). Der finner man eksempel på terskelbegrepene funksjon og derivert. Denne artikkelen inneholder et par andre eksempler på terskelbegrep, brøk og sannsynlighet. Den har eksempler på hva som kan gå galt i overgangsfasen og gir noen tips til hva man kan gjøre for å hjelpe elevene over…
Camilla Normann Justnes, Ingunn Valbekmo, Svein H. Torkildsen
Kompetanseutvikling i matematikk, Organisasjonsutvikling, Representasjoner
Studier av overgangssituasjoner viser at alle overganger byr på muligheter som ansatte i barnehager og skoler kan gripe fatt i. I overgangen oppstår ofte et brudd i kontinuitet. Dersom ansatte i barnehagen og lærere i skolen sammen kan skape kontinuitet for barn og unge, vil det være med på å trygge overgangssituasjonene.
Når barnehager og skoler samarbeider om å skape sammenheng i…
Observasjon er viktig i matematikkfaget, i andre fag og i dagliglivet. Erfaringer fra klasserommet har vist at elever strever med å observere i matematikk. De er usikre på hva som er relevant i en gitt situasjon og hva de skal se etter.
I denne artikkelen skal vi derfor se nærmere på observasjon og hvordan elever kan bli bedre til å observere.
Skolene er pålagt å gi elevene på 1. - 4. trinn intensiv opplæring når de står i fare for å bli hengende etter. Men hvordan planlegge innhold i intensiv opplæring? Forskning og erfaringer fra praksisfeltet viser at "fasemodellen" er et godt verktøy for å planlegge innhold i den intensive opplæringen.
Som en del av grunnlaget for datainnsamling til mitt doktorgradsprosjekt om motivasjon for matematikk, har jeg utviklet et fullstendig undervisningsopplegg i matematikk for grunnkurs i videregående skole. Vi har brukt opplegget fra 4.trinn i grunnskolen til videregående skole. Denne artikkelen beskriver hvordan opplegget kan gjennomføres i videregående skole.