Kengurukonkurransen er satt sammen av forskjellige typer oppgaver. I de tre oppgavesettene Ecolier (4.–5. trinn), Benjamin (6.–8. trinn) og Cadet (9.–10. trinn) finnes det både tall-, geometri- og logiske oppgaver. Alle oppgavetypene er representert i hvert oppgavesett med ulik vanskegrad.
Denne teksten presenterer tre eksempler på oppgaver med mønstre. Kanskje disse kan brukes som…
Vi som arbeider med Kengurukonkurran-sen synes det er spennende at elever fra 10 til 16 år blir utfordret på mer eller mindre den samme oppgaven. I tillegg er det interessant at en ide kan utvikles og dermed varieres, gjøres enklere eventuelt vanskeligere ved at noen opplysninger i teksten blir forandret og/eller at spørsmålet på slutten av oppgaven endres.
Kommunikasjon og matematiske samtaler, Problemløsing, Utforskende og ambisiøs matematikkundervisning
Matematikksenteret har skrevet to artikler om problemløsing. Artikkelen "Å undervise matematisk problemløsing" av Svein H. Torkildsen er laget til MAM-programmet med eksempler knyttet til mellom- og ungdomstrinnet.
Denne artikkelen inneholder imidlertid noen flere problemløsingsstrategier og eksemplene er knyttet til både ungdomstrinn og videregående skole.
En del kenguruoppgaver består av bilder med lite tekst, og disse oppgavene kan egne seg godt for elever på småtrinnet. Oppgavene går ofte ut på å sammenligne figurer, se et mønster, finne brikken som mangler i et puslespill, finne veien gjennom en labyrint eller gjøre enkle opptellinger.
Denne artikkelen presenterer noen eksempler på oppgaver som kan passe for denne aldersgruppa.…
Denne teksten sier noe om bakgrunnen til utvalget av oppgaver til Kengurukonkurransen, og trekker fram ett eksempel på en kreativ oppgave som er særlig interessant.
Elevene i en sjetteklasse hadde deltatt i Kengurukonkurransen. I etterkant fikk de tilbake hver sin besvarelse som var rettet og registrert, uten at læreren hadde markert hva som var riktig eller galt på arket. Elevene hadde ingen hjelp fra rettinga til å se hvilke svar som var riktige.
Denne teksten tar for seg noen oppgaver, og hvilken tilnærming noen av elevene hadde til dem.
En nykomling er i denne sammenhengen en oppgave eller en oppgaveidé som tidligere ikke har vært med i Kengurukonkurransen. Jeg har vist fram og diskutert oppgaven med flere kolleger, og mange av dem har heller ikke løst en slik oppgave. Så det er kanskje ikke bare i kengurusammenheng at dette er en nykomling. Har du sett oppgaven eller noe som ligner, tidligere?
For at kenguruoppgaver i størst mulig grad skal være tilpasset til elever på ulike nivå, finnes det forskjellige oppgavesett. Likevel kan mange av oppgavene i alle de tre oppgavesettene brukes på kryss og tvers uavhengig av nivå og trinn. Når oppgaveideen er god eller problemstillingen interessant, er det ofte bare små justeringer som skal til for at oppgaven kan brukes på høyere eller lavere…
Oppgavene i Kengurukonkurransen er delt inn i fire kategorier; tall, algebra, geometri og logiske oppgaver. Kategorien geometri kan igjen deles i to- og tredimensjonale figurer, symmetri, måling, areal og omkrets osv. Hvis man går gjennom tidligere oppgavesett og velger ut noen oppgaver som for eksempel dreier seg om omkrets, vil man få et lite sett med problemløsingsoppgaver med ulike…