For at kenguruoppgaver i størst mulig grad skal være tilpasset til elever på ulike nivå, finnes det forskjellige oppgavesett. Likevel kan mange av oppgavene i alle de tre oppgavesettene brukes på kryss og tvers uavhengig av nivå og trinn. Når oppgaveideen er god eller problemstillingen interessant, er det ofte bare små justeringer som skal til for at oppgaven kan brukes på høyere eller lavere…
I Cadet 2016 var en av oppgavene å finne summen av lengder i en figur bestående av et kvadrat, to trekanter og en firkant. Hvilke matematiske muligheter kan en slik oppgave gi, og hvordan kan en arbeide med oppgaven på en slik måte at elevene utfordres på viktige matematiske ideer?
Allerede i barnehagen lærer barn om firkanter. De lærer uttrykk som kvadrat og rektangel og etter hvert også trapes, rombe og parallellogram. I barneskolen lærer elevene å beregne omkrets og areal til noen av disse firkantene. Dette læringsmålet blir senere gjentatt både på ungdomsskolen og på Vg1. Til tross for dette viser det seg at mange elever har mangelfull kunnskap om firkanter. …
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler, Utforskende og ambisiøs matematikkundervisning
Australske universiteter har siden 1970-tallet brukt det de kaller «whiteboarding» (Forrester, Sandison & Denny, 2017). Det innebærer å bruke whiteboardtavler som et verktøy i matematikkundervisningen for å fremme høyere ordens tenking og resonnering i tillegg til samarbeidslæring. Elevene skal stå foran tavlene (som må kunne pusses av) i små grupper og løse matematikkproblemer. …
Flere kenguruoppgaver handler om sifrenes plassering i et flersifret tall. Jeg viser noen eksempler og skisserer noen idéer hvordan denne type oppgaver kan videreutvikles.
Pascals talltrekant er en av de mest berømte trekanter vi kjenner til. Denne trekanten er full av spennende mønstre. I dag lar matematikkinteresserte seg begeistre av mulighetene til å utforske de mange mønstrene i trekanten – til og med skjulte mønstre utenfor trekanten!
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Når elever arbeider med LIST ressurser, er lærerens oppgave å veilede dem i utforsking av matematikk. Elever kan utforske den samme oppgaven på ganske ulike vis, med ulike strategier og ved hjelp av ulike representasjoner. Det kan derfor være en utfordring å stille de riktige spørsmålene – på riktig tidspunkt.
Denne teksten tar utgangspunkt i en oppgave fra kengurukonkurransen. Det er endret på noen forutsetninger i oppgaven slik at det gir muligheter for dybdelæring. Teksten beskriver arbeid med denne oppgaven i ei økt med en 7.klasse.
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Kjerneelementene skal være bærende elementer i matematikkundervisningen, og fremhever viktige aspekter i undervisningen. Ett av kjerneelementene er resonnering og argumentasjon, som er en tilnærming mot det å utvikle matematiske bevis.
Denne teksten omhandler resonnering og argumentasjon på småtrinnet med oppgaver fra Kengurukonkurransen.
Når du som lærer velger oppgaver og problemstillinger som du ønsker at elevene skal arbeide med, på hvilket grunnlag tar du valget ditt? Hva ser du etter? Har du tenkt gjennom hva det kan være lurt å legge merke til?
Jeg vil vise eksempler på hva det er med enkelte oppgaver som gjør at de for meg peker seg ut som interessante.