Matematiske begrep, ideer og strategier blir uttrykt ved hjelp av ulike representasjoner. Det er fordi de er abstrakte og må derfor representeres på et eller annet vis for at man skal kunne arbeide med dem. Representasjoner kan være tallsymbol, tallinjer, geometriske figurer, tabeller, diagrammer, grafer, tegninger og beskrivelser med naturlig språk. Å forstå og bruke ulike representasjoner er en…
Helt siden det ble obligatorisk med digitale verktøy til eksamen, har GeoGebra hatt en sterk plass i den norske skolen. Programmet har likevel ikke fått den plassen det fortjener. Det kan brukes til mer enn å tegne og tolke grafer.
Denne artikkelen skal vise hvordan man kan bruke programmet til å oppnå dybdelæring gjennom utforskning og resonnering.
Maria V. Bøe, Camilla Normann Justnes, Susanne Stengrundet
Argumentasjon, Dybdelæring
Denne artikkelen handler om begrepet «horisontkunnskap». Lærere med horisontkunnskap er oppmerksomme på kjernen i faget samtidig som de har øyne for den realfaglige horisonten. Horisontkunnskap er viktig for å skape god læring og undervisning i realfagene.
Teksten blir illustrert med eksempler fra matematikk og naturfag.
Argumentasjon, Kommunikasjon og matematiske samtaler, Matematikk i barnehagen
Barn er nysgjerrig og vil gjerne utforske hvordan ting henger sammen for å forstå verden. Det å se sammenhenger er viktig for forståelse og innsikt. Naturfag fokuserer spesielt på sammenhenger i naturen, og matematikk forteller oss hvordan vi kan undersøke sammenhenger.
Denne teksten belyser hvorfor vi sorterer, og tar for seg aspektene klassifisering og ordning innenfor sortering.
Matematikk kan brukes i en praktisk sammenheng, dvs. det er fagets anvendelsesmuligheter og bruksområder som skal synliggjøres. Når matematikk brukes som et redskapsfag, bør kvaliteten på det som skal lages, både når det gjelder form og funksjon, øke og bli til noe bedre enn om matematikken hadde vært fraværende. Det skal vises på produktet at det er gjennomtenkt, og at det ikke er tilfeldig at…
En oppgavestreng er en sekvens med 4-6 relaterte regnestykker som er designet for å engasjere elever i en diskusjon om en gitt strategi i arbeid med en regneoperasjon. Aktiviteten kan også brukes i diskusjon om en egenskap ved regneoperasjonen uten at den egenskapen nødvendigvis brukes som en strategi i beregningen av de aktuelle regnestykkene.
Argumentasjon, Kommunikasjon og matematiske samtaler, Regnestrategier
Matematiske diskusjoner og kommunikasjon fremheves som avgjørende for elevers forståelse og læring i matematikk.
Denne artikkelen fokuserer på hvordan lærere kan bruke matematiske samtaler til å fremme elevers tenkning og læring i matematikk. Den beskriver redskaper som kan brukes for å implementere diskusjoner i matematikk og for i større grad å involvere elevers tenkning i…
Etter sommerferien når elevene begynner på et nytt klassetrinn eller en ny skole, er ofte de første matematikktimene satt av til repetisjon. Når påsken nærmer seg, stresser lærerne for å bli ferdige med «pensum» for å ha nok tid til repetisjon.
Denne teksten ser på måter å repetere på som gir elevene langt større utbytte enn en ny gjennomgang som ikke hjelper til forståelsen.
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler, Utforskende og ambisiøs matematikkundervisning
Australske universiteter har siden 1970-tallet brukt det de kaller «whiteboarding» (Forrester, Sandison & Denny, 2017). Det innebærer å bruke whiteboardtavler som et verktøy i matematikkundervisningen for å fremme høyere ordens tenking og resonnering i tillegg til samarbeidslæring. Elevene skal stå foran tavlene (som må kunne pusses av) i små grupper og løse matematikkproblemer. …
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Når elever arbeider med LIST ressurser, er lærerens oppgave å veilede dem i utforsking av matematikk. Elever kan utforske den samme oppgaven på ganske ulike vis, med ulike strategier og ved hjelp av ulike representasjoner. Det kan derfor være en utfordring å stille de riktige spørsmålene – på riktig tidspunkt.